Matrix computation of subresultant polynomial remainder sequences in integral domains
نویسندگان
چکیده
We present an impr{wed variant of the matrix-triangularization subresultant prs method [1] fi~r the computation of a greatest comnum divi~w of two polynomials A and B (of degrees m and n, respectively) along with their polynomial remainder ~quence. It is impr~wed in the sense that we obtain complete theoretical results, independent {}f Van Vleck's theorem [13] (which is not always tnle [2, 6]), and, instead of transfornfing a matrix of order 2 .max(m, n) [1], we are now transforming a matrix of order m + n. An example is al.,a~ induded to clarify the concepts.
منابع مشابه
Recursive Polynomial Remainder Sequence and the Nested Subresultants
Abstract. We give two new expressions of subresultants, nested subresultant and reduced nested subresultant, for the recursive polynomial remainder sequence (PRS) which has been introduced by the author. The reduced nested subresultant reduces the size of the subresultant matrix drastically compared with the recursive subresultant proposed by the authors before, hence it is much more useful for...
متن کاملVarious New Methods for Computing Subresultant Polynomial Remainder Sequences (PRS’s)
Teaching subresultant prs’s is an unpleasant experience because there is a misunderstanding about the role of Sylvester’s two matrices and how they affect the signs of the sequences. Almost all articles and texts on the subject perform operations in Z[x] and use a form of pseudo-division that distorts the signs of the polynomial remainders; hence, sentences like “forget about the signs” appear ...
متن کاملSolving over-determined systems by the subresultant method (with an appendix by Marc Chardin)
A general subresultant method is introduced to compute elements of a given ideal with few terms and bounded coefficients. This subresultant method is applied to solve over-determined polynomial systems by either finding a triangular representation of the solution set or by reducing the problem to eigenvalue computation. One of the ingredients of the subresultant method is the computation of a m...
متن کاملSubresultants in Recursive Polynomial Remainder Sequence
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” and investigate their properties. In calculating PRS, if there exists the GCD (greatest common divisor) of initial polynomials, we calculate “recursively” with new PRS for the GCD and its derivative, until a constant is derived. We call such a PRS a recursive PRS. We define recursive subresult...
متن کاملRecursive Polynomial Remainder Sequence and its Subresultants
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” along with investigation of their properties. A recursive PRS is defined as, if there exists the GCD (greatest common divisor) of initial polynomials, a sequence of PRSs calculated “recursively” for the GCD and its derivative until a constant is derived, and recursive subresultants are defined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reliable Computing
دوره 1 شماره
صفحات -
تاریخ انتشار 1995